
Eventual Consistency Today:
Limitations, Extensions and

Beyond
Peter Bailis and Ali Ghodsi, UC Berkeley

Presenter: Yifei Teng
Part of slides are cited from Nomchin Banga

Road Map

● Eventual Consistency: History and Concepts

● How eventual is eventual consistency?

● Programming eventual consistency

● Stronger than eventual

● Conclusions

CAP Theorem

● Maintaining single-system image has a cost

● Note that you can’t “sacrifice” partition tolerance

● Consistency-availability tradeoffs

● Consistency-latency tradeoffs

Eventual Consistency

“…changes made to one copy eventually migrate to all. If all update activity stops, after a period of

time all replicas of the database will converge to be logically equivalent: each copy of the

database will contain, in a predictable order, the same documents; replicas of each document will

contain the same fields.”

Compare SSI and Eventual Consistency

● The predictable order will not necessarily correspond to the execution order

○ Order confusion

● Eventual consistency doesn’t specify windows before converge

○ Arbitrary value

● SSI provides eventual consistency, but not vice versa

○ The “eventual” is immediate

Anti-entropy

● Anti-entropy policy

○ Boardcast is the simpliest one

○ Choose a winning when concurrent writes happen

● Asynchronous process

○ Non blocking anti-entropy

Broadcast

Great Properties

● Easy to implement:

○ does not require writing difficult “corner-case” code to deal with complicated

scenarios

● All operations complete locally:

○ Low latency

● Systems can control the frequency of anti-entropy

Safety and Liveness

● Safety – nothing bad happens

○ every value that is read was, at some point in time, written to the database

● Liveness – all requests eventually receive a response

● Eventual Consistency is purely a liveness system.

○ Replicas will converge, but there are no guarantees with respect to what happens

Metrics and Mechanisms

● Metrics

○ Window of consistency: How long for a write to be available to read?

○ Version: How many version old will a returned value be?

● Mechanisms

○ Measurement: How consistent is a store under the workload now?

○ Prediction: How consistent will a store be under a given situation?

Probabilistically Bounded Staleness (PBS)

● Provide an expectation of recency for reads of data items

○ 100 milliseconds after a write completes, 99.9 percent of reads will return the

most recent version

○ 85 percent of reads will return a version that is within two of the most recent

PBS

Rate of anti-entropy

Network Delay

Local process time

Expected consistency

Eventual Consistency is “good enough

13.6ms 202ms 500ms

200ms 12s

Programming Eventual Consistency

● Compensation: a way to achieve safety retroactively

○ Restore guarantees to users

● Evaluate the benefit

○ B: The benefit of weak consistency

○ C: Cost of each compensation Maximize B - CR

○ R: Rate of anomalies

Compensation by Design

● Compensation is error-prone and laborious

● Some researches provide compensation-free programming

○ CALM theorem: consistency as logical monotonicity

○ ACID 2.0: associativity, commutativity, idempotence, and distributed

○ CRDT: commutative, replicated data types

CALM (Consistency as Logical Monotonicity)

● Monotonicity: compute an ever-growing set of facts and do not ever “retract” facts

that they emit

● A program satisfies CALM can always be safely run on an eventually consistent store.

● Monotonic operations

○ Initializing variables, add set members, and testing a threshold

● Non-monotonic operations

○ variable overwrites, set deletion, counter resets, and negation

ACID 2.0

● Associativity, commutativity, idempotence, and distributed

● Commutative and associative program can tolerate message re-ordering

● Idempotence allows the use of at-least-once message delivery

● Applying these design patterns can achieve logical monotonicity

CRDT (Commutative, Replicated Data Types)

● CRDTs embodies CALM and ACID 2.0 principles

● Any program that correctly uses CRDTs is guaranteed to avoid any safety violations.

● A key property is separating data store and application-level consistency concerns.

○ Enjoy strong application level consistency

○ And the benefits of weak distributed read/write consistency

○ G-Counter is a typical example

Stronger than Eventual

● Compensation requires dealing with inconsistency outside of systems

● CRDT limites the operations an application can employ

● Research shows that no consistency model stronger than causal consistency is

available in the presence of partitions

● Causality can be added to eventual consistency

Causal Consistency

● guarantees each process’s write are seen in order, transitive data dependencies hold

Pushing the Limits

● Causality

○ COPS, Eiger provide causality with low latency and high availability.

○ Many eventual consistent applications can be augmented with causality

● Re-architecting weak isolation databases in distributed environment

○ Keep the same ACID properties

○ High availability

Recognizing the Limits

● A fundamental cost to remaining highly available and low latency

● Staleness guarantees are impossible in a highly available system

○ give me the latest value

● Cannot maintain arbitrary global correctness constraints

○ “create an account with ID 50 if the account does not exist”

Conclusions

● Eventual consistency improves availability and performance at the cost of guarantees

● Eventual consistency not perfect for every task, but good enough for many

applications.

● And eventual consistency will be admired in the future because of its performance

and availability

Thanks You!

